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ABSTRACT

P,
& ‘
-

i
‘ i
w i The radiation from an infinite phased planar array of rectangular pistons

(all with the same velocity magnitude) in a nonrigid baffle is evaluated.

’;I ‘ The nonrigid interstices between the array elements are approximatéh by

ol

fl equivalent undriven pistons with some interﬁal impedance. When the:dimen-
£ | : sions of the pistons are small compared to a wavelength, simple approxima- " ?
tions are obtained for the radiation impedance of an array element and the

loss in source IeQeIVdue to the effect of the interstices.,_ The source level
is multiplied by the factor 1/ |1 + (AA/Zy cos 6) '2, where AA is the fraction :
of the array area occupied by interstices, 6 is the angle between the normal
to the array and the direction to which the array is phased, and Z; is the

interstitial impedance per unit area divided by pc, 5 = density of water,c =

velocity of sound in water.
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I. INTRODUCTION

When radiation frow sonar arrays is considered, usually one prescribes the
velocity distribution of the array elements, and one assumes that the baffle,
if there is one, is rigid. With such-assumptions the mathematical problen is
frequently siapler thag with some other possible assumptions. However, the
interstitial areas between the array elewents often are not rigid; in some
arrays there is no baffle at all, in other arrays the baffle material may
not be rigid enough. Nonrigid surfaces may have a profound effect upon the

propagation of soand. 1Y

Consequently, a study of the effects of nonrigid
interstices is of considerable importance in ghe design of sonar arrays.

We would like to obtain for the effects of interstices a mathematical
solution which is simple and yet accurate. The mathematical modeling of
finite arrays on finite baffles is complicated even if the baffles are rigid.
However, che radiation of sound from an infinite phased array on a rigid plane
baffle can be described by relatively simple approximate expressions under
certain conditions, and the nearfield sound pressure has been shown to be
roughly the same for infinite and large finite arrays for angles not too
near to endfire.7’ 8. Consequently, we have evaluated the effects of non-
rigid interstices in infinite arrays; such effects are expected to approxi-
mate the effects in large finite arrays.

The nonrigidity of the interstitial baffle areas can be modeled in
various ways; the simplest mathematical condition is to set the pressure
on the interstice equal to the velocity of the interstitial baffle surface
times an interstitial impedance per unit area. Such a condition implies
that the nonrigid interstitial surface reacts only to the local pressure,
and the movement of the surface is not affected by the acoustic field else-

where. For example, if the interstitial volume between the sonar array

elements is filled with water, such cavities may have a wide range of
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impedances, depending on the geometry of the cavities; in general the cavi-
ties may be coupled to each other, and therefore the movement of the inter-
stitial surface may depend not only on the local pressure, but also on the
pressure at the other cavities. We will assume that such coupling of cavi-
ties is weak enough socthat at the interstices we can use the local boundary
condition: .pressure equals velocity timeg an impedance per unit area.
Furthermore, if we break up the interstitial area into smaller areas with
dimensions much less than a wavelength, then each smaller area will move
with roughly the same velocity, and therefore can be regarded as a piston;
i.e., the interstitial area between the active radiating pistons can be
broken up into small equivalent passive undriven pistons with some internal
impedance. The radiating pistons have a prescribed velocity distribution
which is obtained by applying the appropriate voltages to the transducer
elements. The equivalent interstitial pistons are vibrated by the acoustic
field only; their velocity distribution depende on the mutual coupling

between the interstitial and radiating pistons, and on the interstitial

impedance. A similar approach has been used to model a nonrigid baffle

surrounding a small array (not the interstitial baffle between the elements).9

Thus we will consider an infinite array of rectangular pistons_with
the interstices approximated by another set of rectangular pistons as shown
in Figure 1. The radiating pistons are unshaded in Figure 1, and the inter-
stitial pistons are.shown shaded. :

All interstitial pistons have the same internal impédance per unit area.
To be specific, we are showing two interstitial pistons for each radiating
piston in Figure 1; however, if desired, the interstitial area could be
divi&ed further into still smaller equivalent pistoms.

In the next sections we will solve for the velocities of the interstitial

pistons when the velocities of the radiating pistons are specified, and we

Sl s g
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will obtain the nearfield and farfield pressure and the radiation impedance

of an element. Siwmple approximate expressions for the radiation impedance
and the loss in source level will be obtained for the case when the dimen-

sions of the radiating and interstitial pistons are much less than a wave-

length. Numerical resﬁlts will be presented for the approximate loss in
source level.

j II. EXACT EQUATIONS

;1 Let the infinite array and the nonrigid baffle occupy the plane z=0
f; (see Fig. 1). Tﬁe centers of the radiating pistons are located at x=nd,,
f_& y=ndy, n=q, 4 1, - 2y soe,y =0, T3, 4 2, ... . The velocity (in the z
direction) of the radiating piston in the mfﬁ row and the qfﬁ column is

forced to be
n iwt + 1Y ’
vgn vg e mn (1)
where vgp is a complex constant, w the radian frequency, t the time, and

b | Yon =-mkdy sin® sin - nkdy sin cos$, (2)

where k=w/c, c the velocity of sound in water, and 6, 4 are angles in

{ 1 spherical coordinates which determine the direction to which the farfield

Let the velocity of the horizontally oriented interstitial piston

th th

l" pressure maximum is steered.
{1 above the m=—, n— radiating piston in Fig. 1 (with center at x=ndy,

; y=(m + %)dy) be denoted by j
v}nln = vHe iu)t-H.Ymn, (3)

] . and let the velocity of the vertically oriented interscitial piston to the

right of the mﬁh, nth radiating piston in Fig. 1 (with center at x=(n+¥)d,,

y-mdy) be denoted by

eSO e i e i itk R i

Vgn-vve iwe+iy, . : %)

| ; For simplicity we will refer to pistons with velocities v&n. vﬁn. or vin as

‘ | i . -3




R-type, H-type, or V-type pistons.
. While vR is known, vH and vv are not, and they have to be obtained
from two equations for a force balance as shown in Appendix A. The

solution of the twé simultaneous equations gives

+ ik
Yy S 8 e Syv Z). SevSvn 5
v 6 + 22108 + T) - B %
R R "3 Swpto %y V' VH
v _ SwlSmm * 2P - SpSuy )
YR Gy + 29 Gyy + 29 - 58,

where pczI is the internal impedance per unit area of both types (hori-
zontal or vertical) of the equivalent interstitial pistons and Z_is
dimensionless; p is the density of water; and for J=R, H, or V, and K=R,

H, or V, the dimensionless quantities SJK are given by

K. iE(J,K)
2 1A, S = S D(A;) D(A)e

JKETm=-°° n=-o T(n, m)

(7)

' . = = = +
where AJ is the area of the piston of type J(=R, H, or V), AC dxdy AR

AH + AV’ D(AJ) and D(AK) are related to the directivity of a rectangular

piston of type J and K,

DCA ) . sin Esg(m)ka;] _ sin [%h(n)kai]
) = =

(8)
bg (m) kay %h(n)ka)

peaTETS




J
where a and a, are the dimensions of the J-t"h piston in the x and y

direction, .

t(n) =.sin@ cosp + 2tn/kd
3 X

9
| g(m) = sin® sinp + 2ﬂ§/k§y (10) ;
| ’ . 4?
1 w(n,m) ={ h(n) |2 + 2l % ’
1 w(n,m [ n)] [g(m)] } a1 |
3 i 1{1- Cwmnl2} % 10 < wn,m) < 15
i i3 {[w(a,m) 3 2 - 1} %, if w(n,m) > 1.
E | 3 ‘ (12)
g ! :
4 E(R,R) = E@,H) = EWV,V) = 0
| : (13a)
E
. -E(R,V) = E(V,R): = ¥h(n)kd_ (13b)
l -E(R,H) = E(H,R) = Zg(mkd, (13¢)
: [j -E(H,V) = E(V,H) = %h(n)kd, - %g(m)kdy
: - ' (13d)

For example, if we write out explicitly the equations for J = R,

K = V, we obtain from Eq. (7))

j @ K . : -1%h(n)kdx
k| . . - i e { - . st [sg@ks ]
: \' R :
i I8 R “xdy RS R o e~ T(n,m) ¥ g(m)ksy

E | I v | L ARTD
| ‘ hix sin [ dh(ks ] sin [hg@mkd ] sin [ ke ]
aw ‘ Eh(n)ks Bk Bh(n)ke

i -5_
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As shown in Appendix A, the total pressure pcvRéithT can be

evaluated as

PT = PRH+ (VHIVR)PH + (vvlﬁR)PV (15)

where PT’ PR’ PH’ and Pv are dimensionless quantities, and for J = R,

H, or V

-ih(n)kx - ig(m)ky - T(n,m)kz + iE(J,R)

. < DAY

e

il G
AC m Si=le in = -iw

T(n,m)
(16)
where D(Aj) is given by Eq.(8), and E(J,R) is given by Eq.(13).

The radiation impedance of a radiating piston is pcs s Z , where

xyR
the dimensionless quantity ZR is derived in Appendix A,
2 = 8 + + :
R T a8 T Oy RSy (7
and SRR’ SHR’ and SVR are given by Eq. (7).

III. APPROXIMATIONS
While the exact equation for the pressure field contains an
infinite number of terms as in Eq.(l6), it has been shown that for
small pistons close together a single term (the m=0, n=0 term) is
sufficient to approximate the exact equation. Thus, if the array

spacings dx and dy are much smaller than a wavelength, then, as shown

in Appendix B, we obtain the following approximate expression for
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the total radiated pressure

A
P & G. R .e -ikxsinfScosp - ikysinSsingd
T ZEEOEQ = ( ’ o

(18)
+ =-ikzcosb) = G.Pt,
and the radiation impedance of an element becomes
Z & AR.G=Z.G, (19)
r

R A cosb
C

where Pr and Zr are the approximate pressure and impedance which
one would have obtained for small pistons close together if the
interstices had been rigid.7 Consequently, G is the factor which

gives the effect of the nonrigid interstices,

A ZIcose % 1 i ZIcose/AA

AA + ZIcose i 1 + (AA/ZIcosef- 1 + (ZIcoselAA)

(20)
where AA is the fraction of the array area occupied by the inter-

stices,
AA = (A + A) /A
( H V? C ‘ZF)

Note that G approaches 1 as it should when either AA = 0 or IZII- ®,

For AA = 1 G is finite, but Pr and Zr vanish because AR S e )
if zI - 0, i.e., the array does not radiate if the interstices are per-
fect pressure release surfaces (at least in this approximation the pressure

vanishes; there may be some of the smaller terms in the exact equation




e e

which do not vanish). Observe that G depends only on the combination

PRI .

chosﬁlAA, not on Z, 6, or AA separately. ZI and AA are dimension-
less, therefore ZIcosele is also dimensionless.

When € = 90°,‘¥hen G - 0, but P.® and.zr o and the
products GPr and GZr remain finite. However, the behavior of the

infinite array does not approximate the behavior of the finite array

for angles O too close to 90°.
Note that
= 0
B TR LA s (22)
is a pure resistance, and under the right conditions the presence of
the nonrigid interstices will make ZR complex. We are mainly inter-

ested in the change in the power output, proportional to the radiation

resistance, and thus proportional to the real part of G,

T R e
( 1 xI)cos RIcos

(bA + RI(.‘.OSQ)2 + (x_‘l_.cose)2

Re (G) =

(23)

where R. + iX ST
S 1 1

On the other hand, the source 1eve1 in the far field is propor-

ti
onal to IPT

2 and thus it is proportional to IGF,

2
(R,

A + RIcose)2 + (xIcoségi

+ xi) coaze

|¢]?

24)

R Sy
IR -0,




The difference

AA R_cos®
Re 6) - | 6% = 1 (25)

% A + RIcose)2 + (XIcos9)2

is propo:tional to the power dissipateq in the interstices; the differ-
ence vanishes when RI = 0 because when the interstice impedance is
purely reactive then the interstices cannot absorb power.

Figure 2 showsl Glz vs. IZIcoselAAl for three different conditions:
1) Ri = 0; 2) RI = XI; 3) XI = 0. The source level is highest for
RI = 0, IgwegF for 31_ = 0; i.e., for the same value of the interstice
impedance magnitude, a pure resistance produces a greater loss of source
level than a pdrg reactance because the interstice then not only modifies

the radiated pressure but also absorbs power. Note also that iGI2 is

independent of the sign of XI.

IV. CONCLUSIONS

We have derived the exact expressions for the pressure [bq.(lS)]
and radiation impedance [ﬁq.(17)] for an infinite array of rectangular
pistons with passive interstitial pistons interspersed among the radi-
ating pistons. For simplicity we assumed that the nonrigid interstices
can be approximated by two equivalent pistons for each radiating piston;
however, we could have specified without much difficulty more intersti-
tial pistons for each radiating piston. With two interstitial pistons
we had to solve two simultaneous equations; with N iaterstitial pistons
we would have to solve N simultaneous equations.

Due to a lack of funds we have not evaluated the exact equations




numerically. However, for small pistons close together we have been
able to obtain a very simple approximate expression [Eq.(203 for the
faetor which modifies the pressure and radiation impedance because of
the presence of the;honrigid interstices. The approximate expression
shows that for angles near broadside the source level will be reduced
by less t?an 4 db if the interstices occupy less than 507 of the array
area and if the magnitude of the normalized dimensionless interstitial
impedance ‘ZII is greater than 1 (see Figure 2). Consequently, one
should be able to design an array with interstices in such a way that
the detrimental effects of the interstices. are tolerable -- if the
presence of pressure release materials and resonances in interstitial
cavities is avoided, then one should be able to make ’ZIlgreater than 1.

The reduction of the area occupied by interstices would also help.

APPENDIX A.
DERIVATION OF THE EXACT EQUATIONS

Since the piston velocities and the pressure field at the mEh row

and the nth column will be the same as at m = 0 and n = 0, except for
the phase Ymn’ we can confine our attention to the pistons at m = 0, n = 0.
Eirst consider the pressure field due to the radiating pistons alone,
i.e., assume the interstices are rigid. Then the pressure field can be
obtained from Eq.(l4) in Refereﬁée 7; in Reference 7 the pistons are circu-
lar, therefore the integration in Eq.(l4) of Reference 7 is over the circu-
lar area of a piston; we must replace that by integration over the rectangu-
lar area of our piston, which then yields the dimensionless quantity P_ as

R
given by Eq.(16) in Section II here.

et




Next let us calculate the pressure pcvﬂeith“ when the H-type

4 5 pistons vibrate with velocities v:n and the rest of the xy-plane is

rigid. P“ is given by the same equation as PR, if we replace the
dimensions of the radiating pistons by the dimensions of the H-type

Y pistons, and if we compensate for a shift of origin from the R-type

P_ is obtained the same way.

E, to H-type pistons; the latter accounts for the phase E(H,R) in Eq.(16).
; v
n

Thus, if we know the velocities vR, vH, vv, then the total pressure
E | is obtained from the superposition of the three partial pressures due to

each type of pistons:

iwt iwt !
F = .+ ¢
4 pcvRe PT pce (vRPR + kaH 'vav)

(a-1)
The superposition yields the correct expression because, for
example, PH gives the correct velocities for the H-type pistons, and
it adds nothing to the velocities of the R-type or V-type pistons,
) g; since PH is a solution of the model where only H-type pistons vibrate,
: ‘Q and R-type and V-type pistons are immobile. Similar considerations
lg, apply to PR and Pv. ‘
k However, this far we still have not found the relationship

a between'vR and VH, vv. To obtain that relationship, we must consider

the forces on the H-type and V-type pistons, i.e., the boundary condi-

tion on the interstices.

To find the total force on an H-type piston, we must integrate

the total pressure, given by Eq.(A-1), over the area Ah. Define

st i;_tgidA PJ’




-
-

‘.‘m._
e
:
9

i.e., the dimensionless quantity SJK is the integral of the partial
pressure due to all J-type pistons over the area of one K-type piston,
divided by the area Ak; the integration yields Eq.(7) in Section II.

SJK is prOportional“Eo the force on one K-type piston due to the com-

. bined action of all J-type pistons. Then the total force FH on the
Ei area A, is

iwt :
= + + v
Py = PeAye T (veSey Ve mn vw

(A-3)
However, if the internal impedance of ;the H-type piston is
pcA“zI, then the boundary condition on the interstice (force = velocity

g | times impedance) becomes

SR
| FH vHe . pcAHzI :
: (A-4)
! where the minus sign arises from the fact that Yy is defined as the
velocity into the water, while the boundary condition contains the

opposite velocity (into the equivalent piston). If we equate Eqs. (A-3)

and (A-4), we obtain

VS w8 % NS cwl oy P,

R RH H HH V VH HI

3 (A' 5)
F Similarly, from the total force Fv on one V-type piston with
E internal impedance pcA.vZI we find
1 >

b + = e

; Brv b v t WSw v’z _

: (A-6)

If we solve simultaneously Eqs.(A-5) and (A-6), then we obtain




I

Eqs.(5) and (6) in Section II. With vH and vv specified, the total
pressure as given by Eq.(A-1) is now completely determined.
Moreover, from the total force FR on one radiating piston we obtain

the radiation impedance pcARZR, because by definition

: iwt
- .
FR pcAkZR vRe .
(A-7)
and, furthermore, from the integral of the total pressure on the radi-

ating piston,

iwt

FR = pcARe

+
(VRSRR VHSHR + VVSVR)’
(A-8)
consequently, if we equate Eqs.(A-7) and (A-8), we obtain Eq.(l7) for

the normalized dimensionless radiation impedance ZR.

APPENDIX B
DERIVATION OF THE APPROXIMATE EXPRESSIONS

1f kdx- 0 and kdy-* 0 (and then ksx- 0, etc., because sx.S dx’ etc.),
then from Eqs.(9) and (10) h(n) = @ and g(m) - @, except for n = 0 and m =0.
Furthermore, T(n,m) - «, except that |

T(0,0) = 1icosb
(8-1)

Consequently, for small pistons close together the dominant terms in Egs.(7)
or (16) are the terms withm =0, n = 0. Form =0, n = 0, and small pistons
close together the directivity D(AJ) &~ 1 in Eq.(8), and the E(J,K) = O.
Thus :

S, = A_/A cosb.
% "% (8-2)

«]3-




P& - (AleéEose) exp (-ikxsinfcosd - ikysin®sing - ikzcos8)

(B-4)
If we substitute Eqs.(B-2), (B-3), and (B-4) into Eqs.(15) and (17),
then we obtain Eqs.(18) and (19).
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